

Welcome to Cardgame’s documentation!

[image: Documentation Status]
 [https://pycardgame.readthedocs.io/en/latest/?badge=latest]
Contents:

	CardGame Multiplayer Protocol Specification
	Protocol Specification Index

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

CardGame Multiplayer Protocol Specification

TODO

Protocol Specification Index

	Cards

	Doppelkopf: Rules

	Doppelkopf: Penalties

	auth - Authentication Packets

	status - Status Packets

	party - Party Management Packets

	lobby - Lobby Management Packets

	game - Main Game Packets

	ping Connection Mode

Packets

	cg:version.check - Version compatibility check

	cg:auth - Authentication Packet

	cg:auth.precheck - Authentication Precheck Packet

	cg:status.user - User Status Update

	cg:status.message - Status Messages for Clients

	cg:status.server.mainscreen - Status Updates for the main screen

	cg:lobby.create - Create lobby

	cg:lobby.join - Join lobby

	cg:lobby.invite - Invite client to lobby

	cg:lobby.invite.accept - Accept invitation to lobby

	cg:lobby.change - Lobby data change

	cg:lobby.leave - Leave lobby

	cg:lobby.kick - Kick user from lobby

	cg:lobby.ready - Lobby readiness conveyance

	cg:party.create - Party creation

	cg:party.join - Join party

	cg:party.invite - Invite client to party

	cg:party.invite.accept - Accept invitation to party

	cg:party.change - Party data change

	cg:party.leave - Leave party

	cg:party.kick - Kick user from party

	cg:game.start - Start game

	cg:game.end - End game

	cg:game.load - Load game

	cg:game.save - Save game

	cg:game.dk.question - Request an answer from a client

	cg:game.dk.announce - Make an announcement

	cg:game.dk.card.intent - Do something with a card

	cg:game.dk.card.transfer - Transfer a card

	cg:game.dk.complaint - Point out a wrong move

	cg:game.dk.turn - Turn Update

	cg:game.dk.round.change - Data update on the round

	cg:game.dk.scoreboard - Update the scoreboard

Cards

TODO

Doppelkopf: Rules

TODO

Doppelkopf: Penalties

TODO

auth - Authentication Packets

TODO

Packets

	cg:auth - Authentication Packet

	cg:auth.precheck - Authentication Precheck Packet

cg:auth - Authentication Packet

	
cg:auth

	

This packet is used to perform log-in and sign-up activities.

	Internal Name

	cg:auth

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	auth only

Purpose

Using this packet, the client can authenticate itself with the server as a specific
account. It can also create new accounts using this packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "username": "notna",
 "pwd": "...",

 "create": false,
}

username is the user name of the account to login as or create.

pwd is the encrypted password of the given account.

Warning

Currently, passwords aren’t actually encrypted in transmission. In the future,
all traffic will be either tunneled through SSL or an asymmetric cipher will
be used to transmit passwords.

create is an optional flag indicating if the client wishes to create a new account.
If it is not given, it will be assumed as false. This flag exists to prevent accidental
account creation should a user mistype their username.

The server will respond with a packet of the same type and the following data:

{
 "status": "logged_in",

 "username": "notna",
 "uuid": "cfde3788-e653-4ef3-8b19-f741e2194e0f",
}

status is the current authentication status. It should be one of logged_in,
wrong_credentials, user_exists or logged_out.

username is the user name the user is logged in as. This field is only sent
if status is logged_in or user_exists.

uuid is the UUID of the current account. It can be used to look up
further information in the user database. It is only present if status
is logged_in.

If the login attempt was successful, the server will already pre-send a cg:status.user
packet with information on the user. It will also send a cg:status.server.mainscreen
packet to update the client on the contents of the main screen. Also, the connection
mode will change to active.

See also

See the cg:status.user packet for more information on how to get
User data.

See also

See the cg:auth.precheck packet for more information on the
authentication process.

cg:auth.precheck - Authentication Precheck Packet

	
cg:auth.precheck

	

This packet is used to pre-check a login attempt.

	Internal Name

	cg:auth.precheck

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	auth only

Purpose

Using this packet, the client can check if the account name actually exists and
fetch an encryption key to be used when sending the password.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "username": "notna",
}

username is just the user name entered by the user on the prompt displayed by
the client.

The server responds with a packet like this:

{
 "username": "notna",
 "valid": true,
 "exists": true,

 "key": "...",
}

username is the same name as was sent by the client, but normalized according
to the server. Usually this involves lower-casing the user name.

valid is a boolean flag that determines whether or not the username is valid
on this server. This does not mean that it exists, just that it could exist.

exists is a boolean flag showing whether the account exists or not. This can
be used by the client to ask the user if they want to create a new account.

key is a binary key to be used to encrypt the password before sending it to the
server. It is specific to the connection, user name and will expire after some time.
If the key is the empty string, no encryption should be applied.

See also

See the cg:auth packet for further information on password exchange.

status - Status Packets

TODO

Packets

	cg:status.user - User Status Update

	cg:status.message - Status Messages for Clients

	cg:status.server.mainscreen - Status Updates for the main screen

cg:status.user - User Status Update

	
cg:status.user

	

This packet is used to request and retrieve user information and status updates.

	Internal Name

	cg:status.user

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	All States

Purpose

Using this packet, the client can request information about a specific user from
the server. The server determines what information to send.

Additionally, the server may send this packet at any to preempt information requests
or notify the client of changes to a users appearance.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the client to the server to request information on a user:

{
 "username": "notna",

 "uuid": "61cf5d06-8d01-4fb3-a4a8-ea7a0633b0b8",
}

username is the name of the user that the client wants information on.

uuid is the UUID that the client wants more information on.

Note

uuid and username are not exclusive, but uuid will be used preferentially
before username.

The server sends user status updates in the following format, either as a response
to a request or as a notification:

{
 "username": "notna",
 "uuid": "cfde3788-e653-4ef3-8b19-f741e2194e0f",

 "status": "logged_in",
 ...
}

status is the current status of the user. This may be one of online,
away, busy, offline or notexist if the user could not be found.

Note

If status is notexist, all other fields will not be populated.

username is the user name to be displayed for the given user.

uuid is the UUID of the given user.

Todo

Add more user attributes here.

cg:status.message - Status Messages for Clients

	
cg:status.message

	

This packet is used by the server to show different notices, warnings and errors on the
client.

	Internal Name

	cg:status.message

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	All States

Purpose

Using this packet, the server can cause the client to show warnings and other messages
to the user.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is an example that the server could send to the client:

{
 "type": "notice",

 "msg": "Hello World!",
}

type is the type of status message and determines the imagery used in the dialog on
the client. Currently, there are the following types: notice, warning and
error.

msg is the raw message. Currently, no formatting is supported, but this may change in
the future.

Note

Long messages may be cut short by the client, depending on the window size and type.

cg:status.server.mainscreen - Status Updates for the main screen

	
cg:status.server.mainscreen

	

This packet is sent by the server to let the client know about the contents of the main
screen.

	Internal Name

	cg:status.message

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Using this packet, the server can update the client on information shown on the main screen.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is an example that the server could send to the client:

{
 ...
}

Todo

Find something to transmit here…

See also

See the cg:status.user packet for more information about how user profile
data is sent to the client.

party - Party Management Packets

TODO

Packets

	cg:party.create - Party creation

	cg:party.join - Join party

	cg:party.invite - Invite client to party

	cg:party.invite.accept - Accept invitation to party

	cg:party.change - Party data change

	cg:party.leave - Leave party

	cg:party.kick - Kick user from party

cg:party.create - Party creation

	
cg:lobby.ready

	

This packet is used to create a party.

	Internal Name

	cg:party.create

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

This packet is used by a client to create a party. Afterwards, the client will
be automatically joined the party using the cg:party.join packet.

Structure

The package ought not to contain any data.

See also

See the cg:party.join for further information on joining a party.

cg:party.join - Join party

	
cg:party.join

	

This packet is used to join a party.

	Internal Name

	cg:party.join

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

After the creation of a party, the creator will be joined automatically to
the party. Additionally, if another client accepts an invitation to a party, he will be
joined.

Upon joining, the server will send a cg:party.change packet to the other clients
in the party containing the updated user list. The joining client will receive a similar
packet which however will contain all the information on the party.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "party":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

party is the party’s UUID.

See also

See the cg:party.create packet for further information on how a party is created.

cg:party.invite - Invite client to party

	
cg:party.invite

	

This packet is used to invite other clients to a party.

	Internal Name

	cg:party.invite

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to invite other clients to a party. It transmits the username
of the invited user to the server and afterwards tells the inviter whether the client
exists. Additionally, it informs the invited client on the invitation.

Upon accepting the invitation, the server will receive a cg:party.invite.accept
packet from the invited client.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "username":"notna",
}

username is the name of the invited user.

The server will answer to the inviting client with this:

{
 "user_found":True,
}

user_found is a boolean informing the inviter whether the invited user has been found.

Additionally, it will send following data to the invited client:

{
 "inviter":"e2639d1f-a7b3-409f-87e4-595a85444d30 ",
}

inviter is the UUID of the inviting user.

See also

See the cg:party.invite.accept packet for further information on accepting
an invitation.

cg:party.invite.accept - Accept invitation to party

	
cg:party.invite.accept

	

This packet is used to accept the invitation to a party.

	Internal Name

	cg:party.invite.accept

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Upon being invited to a party, this packet is used to inform the server on
whether the client has accepted or denied the invitation.

If it accepts the invitation, the client will receive a cg:party.join packet.
Furthermore, the inviter will be informed via a cg:status.message packet,
if the invited client accepted the invitation.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "accepted":true,
}

accepted is a boolean declaring whether the invitation has been accepted.

See also

See the cg:party.invite packet for further information on inviting to parties.

See also

See the cg:party.join packet for further information on joining a party.

cg:party.change - Party data change

	
cg:party.change

	

This packet is used by the server to inform the client on any kind of change in a party.

	Internal Name

	cg:party.change

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to inform all the clients in a party about any kind of change.
This mostly will be a client joining or leaving the party.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "userlist":["e2639d1f-a7b3-409f-87e4-595a85444d30", "e2639d1f-a7b3-409f-87e4-595a85444d30"],
}

userlist is a list containing the UUIDs of the users in the party.

cg:party.leave - Leave party

	
cg:party.leave

	

This packet is used to leave a party.

	Internal Name

	cg:party.leave

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to leave a party, may it be by the clients own decision or
for it being kicked. The server will also confirm the client that it has left the party.

Subsequently, the server will send a cg:party.change packet to all remaining
clients in the lobby containing an updated user list.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The serverbound packet doesn’t contain any data.

Note

If the client is kicked out of the party, the packet will only be clientbound since
the client didn’t choose itself to leave the party.

The server will send following to the client:

{
 "party":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

party is the UUID of the party that was left.

See also

See the cg:party.kick for further information on kicking a user out of a party.

cg:party.kick - Kick user from party

	
cg:party.invite

	

This packet is used to kick another client from a party.

	Internal Name

	cg:lobby.kick

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to kick a client from a party. It also allows the kicker
to name a reason for why the other client has been kicked.

This client will receive a cg:status.message packet informing it on the
reason. Subsequently, the server will send it a cg:party.leave packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "username":"notna",
 "reason":"Pressed Alt-F4 to turn up the volume",
}

username is the name user that ought to be kicked.

reason is the justification for the kick.

See also

See the cg:party.leave packet for further information on leaving a party.

lobby - Lobby Management Packets

TODO

Packets

	cg:lobby.create - Create lobby

	cg:lobby.join - Join lobby

	cg:lobby.invite - Invite client to lobby

	cg:lobby.invite.accept - Accept invitation to lobby

	cg:lobby.change - Lobby data change

	cg:lobby.leave - Leave lobby

	cg:lobby.kick - Kick user from lobby

	cg:lobby.ready - Lobby readiness conveyance

cg:lobby.create - Create lobby

	
cg:lobby.create

	

This packet is used to create a lobby.

	Internal Name

	cg:lobby.create

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Using this packet, the server is notified of the creation of a lobby, either
because a custom game was created by a client, or because the matchmaking
matched enough players together to start a game.

Upon creating the lobby, the creator and his party members will be joined using
a cg:lobby.join packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "game": "doppelkopf",
 "variant": "c",
}

game may be a string declaring the type of game the lobby creator wants to play.
This field is optional.

variant may be a string declaring the variant of game that the lobby creator wants
to play. Available variants differ from game to game. This field is required if game
is given.

See also

See the cg:lobby.join packet for further information on the response of
the server.

cg:lobby.join - Join lobby

	
cg:lobby.join

	

This packet is used to join a lobby.

	Internal Name

	cg:lobby.join

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

After the creation of a lobby, the creator and all his party members
will be joined automatically. Additionally, any client accepting an invitation will receive
this packet.

Upon joining, the server will send a cg:lobby.change packet to the other clients
in the lobby containing the updated user list. The joining client will receive a similar
packet which however will contain all the information on the lobby.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "lobby":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

lobby is the lobby’s UUID.

See also

See the cg:lobby.create packet for further information on how a lobby is created.

cg:lobby.invite - Invite client to lobby

	
cg:lobby.invite

	

This packet is used to invite other clients to a lobby.

	Internal Name

	cg:lobby.invite

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to invite other clients to a lobby. It transmits the username
of the invited user to the server and afterwards tells the inviter whether the client
exists. Additionally, it informs the invited client on the invitation.

Upon accepting the invitation, the server will receive a cg:lobby.invite.accept
packet from the invited client.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "username":"notna",
}

username is the name of the invited user.

The server will send following data to the invited client:

{
 "inviter":"e2639d1f-a7b3-409f-87e4-595a85444d30",
 "lobby_id":"g2639d1f-a7b3-409f-87e4-595a85444d30"
}

inviter is the UUID of the inviting user.

lobby_id is the UUID of the lobby the user was invited to.

See also

See the cg:lobby.invite.accept packet for further information on accepting
an invitation.

cg:lobby.invite.accept - Accept invitation to lobby

	
cg:lobby.invite.accept

	

This packet is used to accept the invitation to a lobby.

	Internal Name

	cg:lobby.invite.accept

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Upon being invited to a lobby, this packet is used to inform the server on
whether the client has accepted or denied the invitation.

If it accepts the invitation, the client will receive a cg:lobby.join packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "accepted":true,
 "inviter":"d2639d1f-a7b3-409f-87e4-595a85444d30"
 "lobby_id":"e2639d1f-a7b3-409f-87e4-595a85444d30",
}

accepted is a boolean declaring whether the invitation has been accepted.

inviter is the UUID of inviting user.

lobby_id is the UUID of the lobby the user was invited to.

See also

See the cg:lobby.invite packet for further information on inviting to lobbies.

See also

See the cg:lobby.join packet for further information on joining a lobby.

cg:lobby.change - Lobby data change

	
cg:lobby.change

	

This packet is used by the server to inform the client on any kind of change in a lobby.

	Internal Name

	cg:lobby.change

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used to inform all the clients in a lobby about any kind of change.
This might be a client joining or leaving the lobby, the choice of game or its rules being
changed, players signalising their readiness, and more.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "users":{
 "e2639d1f-a7b3-409f-87e4-595a85444d30": {"ready": true, "role": 1},
 "e70d98cd-a33b-41f2-9cb4-8c6e3aeadbb7": {"ready": false, "role": 2},
 },
 "game":"doppelkopf",
 "gamerules":{
 "fuechse":true,
 "feigheit":true,
 "armut":false,
 },
 "gamerule_validators":{
 ...
 },
 "supported_bots": ["dk_dumb", "dk_smart"],
}

userlist is a dictionary mapping the UUIDs of players to their metadata.
This metadata currently contains the ready and role keys. All players must have
their ready flag set to true to begin the game. role determines what the player
can do. If the role is -1, the player should be removed.

user_order is the order of the users for being shown in the lobby and for determining
the seat order in the game.

game is the name of the game that will be played.

gamerules are the rules by which the game will be played. Note that only updated rules will
be sent.

gamerule_validators is a dictionary containing the validators for the current game.

supported_bots is a list of supported bots names.

Todo

Document the validator concept

Note

All the parameters are optional. However, they should be all sent upon joining so
the client knows what information to show.

Note

The keywords for the different gamerules will change depending on the game. Also,
multiple of the games being of german origin, many rules will have german names. All
gamerule names should be ASCII only for maximum compatibility. This does not however
apply to the displayed translated names.

cg:lobby.leave - Leave lobby

	
cg:lobby.leave

	

This packet is used to leave a lobby.

	Internal Name

	cg:lobby.leave

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used to leave a lobby, may it be by the clients own decision or
for it being kicked. The server will also confirm the client that it has left the lobby.

Subsequently, the server will send a cg:lobby.change packet to all remaining
clients in the lobby containing an updated user list.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The serverbound packet doesn’t contain any data.

Note

If the client is kicked out of the lobby, the packet will only be clientbound since
the client didn’t choose itself to leave the lobby.

The server will send following to the client:

{
 "lobby":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

lobby is the UUID of the lobby that was left.

See also

See the cg:lobby.kick for further information on kicking a user out of a lobby.

cg:lobby.kick - Kick user from lobby

	
cg:lobby.kick

	

This packet is used to kick another client from a lobby.

	Internal Name

	cg:lobby.kick

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used to kick a client from a lobby. It also allows the kicker
to name a reason for why the other client has been kicked.

This client will receive a cg:status.message packet informing it on the
reason. Subsequently, the server will send it a cg:lobby.leave packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "uuid":"dc71e5dd-5d4b-4809-8546-068e2628f115",
 "reason":"Pressed Alt-F4 to turn up the volume",
}

uuid is the UUID of the user that ought to be kicked.

reason is the justification for the kick.

See also

See the cg:lobby.leave packet for further information on leaving a lobby.

cg:lobby.ready - Lobby readiness conveyance

	
cg:lobby.ready

	

This packet is used by a client to signalise it is ready to begin the game.

	Internal Name

	cg:lobby.ready

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used by a client to signalise it is ready to begin the game. When all
clients in a lobby conveyed their readiness, the game begins.

When the server receives this packet, it will send a cg:lobby.change packet
to all clients in the lobby containing the updated list of ready players.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "ready": true,
}

ready defines whether or not the client is ready to play.

game - Main Game Packets

TODO

Packets

	cg:game.start - Start game

	cg:game.end - End game

	cg:game.load - Load game

	cg:game.save - Save game

	cg:game.dk.question - Request an answer from a client

	cg:game.dk.announce - Make an announcement

	cg:game.dk.card.intent - Do something with a card

	cg:game.dk.card.transfer - Transfer a card

	cg:game.dk.complaint - Point out a wrong move

	cg:game.dk.turn - Turn Update

	cg:game.dk.round.change - Data update on the round

	cg:game.dk.scoreboard - Update the scoreboard

cg:game.start - Start game

	
cg:game.start

	

This packet is used to start the game.

	Internal Name

	cg:game.start

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	lobby and active

Purpose

This packet is used to start the game, either when all clients in a lobby conveyed their
readiness or when a client reconnects to the server after exiting from a running game.
Upon receiving this packet, as well as all the card creation packets, the client will send this
packet back to the server so that it knows, when all the players are ready and the cards
can be dealt

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server:

{
 "game_type": "doppelkopf",
 "game_id": 'e613d0cc-1021-46fb-8403-c2b66663cfb6',
 "player_list": [
 'd5b445bf-8836-4fec-a4a8-a219f6df073e',
 '08e6b252-6f24-4d0f-9d77-be926461874a',
 '9267bb0e-619c-41c6-a3d1-ef7d574ccbdd',
 '9765882f-5763-4373-93a5-f8fd0c643018',
],
}

game_type is the type of the game (skat, doppelkopf, rummy or canasta).

game_id is the UUID of the game.

player_list is a list of the UUIDs of the players in the game, in the same order as in the server’s
game object

The client will send and empty packet to the server.

cg:game.end - End game

	
cg:game.end

	

This packet is used to end the game.

	Internal Name

	cg:game.end

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_*

Purpose

This packet is used to end the game, either when the predefined amount of rounds has been
reached or when all players decide to exit the game early.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server:

{
 "next_state": "results"
}

next_state can either be results if the game has been ended properly, or lobby if it was ended
abruptly.

cg:game.load - Load game

	
cg:game.load

	

This packet is used to load a game upon continuing an old game.

	Internal Name

	cg:game.load

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	lobby

Purpose

This packet is used, when a player in a lobby loads an old game. It conveys the game data
to the server so that the server can load this game. The other clients in the lobby will only
receive the game data with the cg:game.start packet

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent to the server:

{
 "game_id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1",
 "data": {
 "id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1"
 "type": "dk",
 "creation_time": 1591004154.1594243,
 "players": [
 "acb8fa68-5c22-42cc-a4fa-1ba600dcdb9e", "c4db1dfe-9d6c-41c2-9a88-ea7c641738a6",
 "d940a7e4-c19a-4904-abcf-71aab689da11", "ac5085ad-148d-4838-b800-dba3c6a5c91c"
],
 "gamerules": {
 "dk.etc": ["and", "so", "on"]
 },
 "round_num": 3,
 "buckrounds": [],
 "scores": [[-3, 3, 3, -3], [2, 2, 2, -6], [5, -5, 5, -5]],
 "current_points": [4, 0, 10, -14],
 "game_summaries": [
 ["re_win", "re"],
 ["kontra_win", "no90"],
 ["kontra_win", "kontra", "no90", "against_cqs"]
]
 }
}

game_id is the game’s UUID.

data is a dictionary containing the data of the saved game. It should contain following keys:

id: see game_id

type The game type. It can be dk (Doppelkopf), sk (Skat), cn (Canasta) and rm (Rummy).

creation_time is the system time at which the game was created.

players is a list of the UUIDs of the players.

gamerules is a dictionary containing the game’s gamerules.

round_num is the amount of rounds, that have already been played.

buckrounds is a list of the buckrounds, that still have to be played. Its exact structure depends on the buckround
gamerules.

scores is a list containing lists for each round. In these lists, the scores for the round are saved.

curront_points is a list containing the current scores for the players.

game_summaries is a list containing the game summaries for all rounds.

cg:game.save - Save game

	
cg:game.save

	

This packet is used to save a game for the purpose of continuing it later.

	Internal Name

	cg:game.save

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_*

Purpose

This packet is used, when all players decided to adjourn the game. The server will send
the clients in the game this packet containing the game data, that should be saved locally
for being able to load it when continuing the game.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server:

{
 "game_id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1",
 "data": {
 "id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1"
 "type": "dk",
 "creation_time": 1591004154.1594243,
 "players": [
 "acb8fa68-5c22-42cc-a4fa-1ba600dcdb9e", "c4db1dfe-9d6c-41c2-9a88-ea7c641738a6",
 "d940a7e4-c19a-4904-abcf-71aab689da11", "ac5085ad-148d-4838-b800-dba3c6a5c91c"
],
 "gamerules": {
 "dk.etc": ["and", "so", "on"]
 },
 "round_num": 3,
 "buckrounds": [],
 "scores": [[-3, 3, 3, -3], [2, 2, 2, -6], [5, -5, 5, -5]],
 "current_points": [4, 0, 10, -14],
 "game_summaries": [
 ["re_win", "re"],
 ["kontra_win", "no90"],
 ["kontra_win", "kontra", "no90", "against_cqs"]
]
 }
}

game_id is the game’s UUID.

data is a dictionary containing the data of the saved game. It should contain following keys:

id: see game_id

type The game type. It can be dk (Doppelkopf), sk (Skat), cn (Canasta) and rm (Rummy).

creation_time is the system time at which the game was created.

players is a list of the UUIDs of the players.

gamerules is a dictionary containing the game’s gamerules.

round_num is the amount of rounds, that have already been played.

buckrounds is a list of the buckrounds, that still have to be played. Its exact structure depends on the buckround
gamerules.

scores is a list containing lists for each round. In these lists, the scores for the round are saved.

curront_points is a list containing the current scores for the players.

game_summaries is a list containing the game summaries for all rounds.

cg:game.dk.question - Request an answer from a client

	
cg:game.dk.question

	

This packet is used to request an answer from a player. It is only
used for the game Doppelkopf.

	Internal Name

	cg:game.dk.question

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server can ask the client on its “opinion” on something.
A question packet will be answered by the client with a cg:game.dk.announce
packet. This packet is only available for the game Doppelkopf.

It will be used to ask all players about a reservation at the begin of each round.
In the course of this, the concerned players will be inquired after solos,
throwing, pigs, superpigs, poverty and wedding.
In the cases of a wedding or a poverty, the choice of the trick or of the cards to
exchange are requested by this packet.

See also

See Doppelkopf: Rules for further information on special rules.

In case of an accusation concerning an external misconduct, e.g. originating from a chat,
this packet will be used to ask all the players if they support the accusation.

See also

See the cg:game.dk.complaint packet for further information on accusations.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "type":"reservation",
 "target":"296f8f9f-40dc-4ef7-b9b5-851d58c9c966",
}

type is the type of request sent.

Note

Following types are available: reservation, solo, throw, pigs,
superpigs, poverty, poverty_accept, poverty_trump_choice,
poverty_return_trumps, poverty_return_choice, wedding,
wedding_clarification_trick, black_sow_solo and accusation_vote.

target is the UUID of the player to whom the question is directed. This is
necessary because sometimes all players are supposed to hear a question, though it might not
be directed at all of them.

See also

See the cg:game.dk.announce packet for further information on announcements.

cg:game.dk.announce - Make an announcement

	
cg:game.dk.announce

	

This packet is used to announce something. It is only used for the game Doppelkopf.

	Internal Name

	cg:game.dk.announce

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, a player can make an announcement. This announcement will be sent to
all the players. This packet is only available for the game Doppelkopf.

This packet will be used to answer to a reservation, solo, throwing, pigs,
superpigs, poverty and wedding. In case of a wedding, it will
transfer the clarification trick and in case of a poverty, it will be used to tell the
amount of returned trumps.
During the course of the game, it will be used to announce Re and Kontra as well as
denials like No 90 etc. Furthermore, it will be used to announce a pig.
In case of an accusation with external misconduct it will be used to transmit the votes
of the players.

See also

See Doppelkopf: Rules for further information on special rules.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "type":"poverty_return",
 "data":{"amount":3},
}

type is the context in which the announcement is made.

data is an optional argument transmitting further information if required.

Note

Following types are available: reservation_yes, reservation_no, solo_yes,
solo_no, throw_yes, throw_no, pigs_yes, pigs_no, superpigs_yes,
superpigs_no, poverty_yes, poverty_no, poverty_accept, poverty_decline,
poverty_return, wedding_yes, wedding_no, wedding_clarification_trick,
re, kontra, no90, no60, no30, black, pig, superpig,
black_sow_solo, ready, throw.

Note

Following types require data:
solo_yes, black_sow_solo: type (the type of the solo),
poverty_return: amount (the amount of trumps returned to the poverty player,
wedding_clarification_trick: trick (the trick the bride wishes to determine the re party),
no90, no60, no30 and black: party (Optional, the party of the announcing player,
but only, if it wasn’t known yet.)

The server conveys following data to all the clients:

{
 "announcer":"453b1c0c-4742-4ba7-9d42-6f4acec1856a",
 "type":"pig",
}

announcer is the UUID of the player who made the announcement.

type and data are similar to arguments the server received.

cg:game.dk.card.intent - Do something with a card

	
cg:game.dk.card.intent

	

This packet is used to do something with a card. It is only used for the game Doppelkopf.

	Internal Name

	cg:game.dk.card.intent

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, a player can perform an action with a card. Usually this is playing
the card. Subsequently, the server will send a game.dk.card.transfer
packet to all clients. This packet is only available for the game Doppelkopf.

In case of a poverty, this packet will be used to choose the cards that should be
exchanged. Otherwise, it’s used to play a card over the course of the game.

See also

See Doppelkopf: Rules for further information on special rules.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the client to the server:

{
 "intent":"play",
 "card":"91eb5e2c-b7e8-4d8a-b865-7e9eaf2e6469",
}

intent is the action that the player wants performed. It can be play, pass_card or
return_card.

card is the UUID of the card the player wants to use for the given intent. If an intent requires
multiple cards, this field may be a list.

See also

See the game.dk.card.transfer for further information on how a card is moved
from one slot to another.

cg:game.dk.card.transfer - Transfer a card

	
cg:game.dk.card.transfer

	

This packet is used to transfer a card from one slot to another one. It is only
used for the game Doppelkopf.

	Internal Name

	cg:game.dk.card.transfer

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server can signalise the client that a card was transferred
to another slot. This packet is only available for the game Doppelkopf.

This may be used for dealing the cards, where the cards will be moved from the shuffled
deck to the hands of the players. It will also be used when a player plays a card; the
card will be transferred from the player’s hand to the table. Furthermore, after all
the players played their card, the four cards on the table will be moved to the trick
stack of the player who won the trick. Moreover, if the rule Armut is active,
upon declaring an Armut, this packet will be used for exchanging three cards from the
concerned players.

See also

See Doppelkopf: Rules for further information on special rules.

Note

To minimise the possibilities to cheat, the packet will only transmit the value of the
card if the client is intended to know about it. Otherwise, the client will only be informed
on the transfer of an unknown card.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "card_id":"91eb5e2c-b7e8-4d8a-b865-7e9eaf2e6469",
 "card_value":"cq",
 "from_slot":"hand2",
 "to_slot":"table",
}

card_id is the UUID of the transferred card.

card_value is the value of the card. If the client should not know about the card
value, an empty string will be transmitted.

from_slot is the slot in which the card was before the transfer. If this is
None, the card is to be created. If this field is not None and the card_id
does not exist, the client should crash with an appropriate error message.

to_slot is the slot to which the card will be transferred.

Note

Following slots are available: stack, hand0 to hand3, poverty, table,
tricks0 to tricks3

cg:game.dk.complaint - Point out a wrong move

	
cg:game.dk.complaint

	

This packet is used to point out a mistake another player has made. It is only used for
the game Doppelkopf.

	Internal Name

	cg:game.dk.complaint

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, a player can denounce a mistake by another player. This packet is
only available for the game Doppelkopf.

This packet is used when a player makes a mistake by accident or deliberately and another
player denounces this mistake. First, the denouncing player has to accuse, which player
made the mistake and choose the type of the misconduct.
In case of an accusation with wrong card or wrong announcement, he will receive a
list of all the cards the accused player played and all the announcements he made. The
accusing player must choose from this list, which move was illegal.
In case of an accusation with played early, the server will check whether the last card
of the accused player was played before it was his turn.
If the accusation proves to be wrong or if the accusing player decides to cancel the
accusation, he will receive a penalty himself. Otherwise, the accused player will be
punished and the game might be aborted, depending on the penalty settings.

The mistake can also emanate from a chat or voice chat. Since the server cannot automatically
arbitrate such a complaint, the two other players have to confirm it using a
cg:game.dk.question and a cg:game.dk.announce packet. If 3 of
the 4 players back the accusation, the punishment will be undergone by the accused,
otherwise by the accuser.

Note

If the punished player ought to receive demerit points, the cg:game.dk.scoreboard
will be used.

See also

See Doppelkopf: Penalties for further information on penalty settings.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the client to the server:

{
 "accused":"e421c337-70f6-409a-bdcf-acf1b3c3c6e0",
 "type":"wrong_announcement",
}

accused is the UUID of the accused player.

type is the misconduct the accused is charged with.

Note

Type can have following arguments: wrong_card, wrong_announcement, played_early,
external

In case of an accusation with wrong_card or wrong_announcement, the server will
reply like this:

{
 "moves":{
 0:{
 "type":"announcement",
 "data":"reservation_no",
 },
 4:{
 "type":"announcement",
 "data":"kontra",
 },
 5:{
 "type":"card",
 "data":"cq",
 },
 ...
 },
 "accused": "e421c337-70f6-409a-bdcf-acf1b3c3c6e0",
 "type": "wrong_announcement",
}

moves is a dictionary containing all the moves the player has done so far. Each move is
represented by its move-ID, beginning in each round with 0 and counting up for each announcement
made and each card played. The ID is followed by a dictionary declaring its type (announcement, card
or accusation) and data specifying the kind of the announcement or the value of the card.

Note

Only the accuser will receive the moves field. All other clients will still get all
other fields, however.

The client will respond with the following data:

{
 "accused":"e421c337-70f6-409a-bdcf-acf1b3c3c6e0",
 "type":"wrong_announcement",
 "move":{
 "98fd442d-4ee0-4d96-bf51-12917e36a001":{"type":"announcement", "data":"kontra"},
 },
}

accused and type remain the same as in the first packet.

move is the move representing the misconduct, stored as described above.

cg:game.dk.turn - Turn Update

	
cg:game.dk.turn

	

This packet is used to inform all players about the next turn. It is only used for the game
Doppelkopf.

	Internal Name

	cg:game.dk.turn

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server informs all clients, whose turn it is to play a card. This
packet is only available for the game Doppelkopf.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the server to the client:

{
 "current_trick":1,
 "total_tricks":12,
 "current_player":"7eb1c06d-2f66-46c7-8eef-6aa5a2ff85aa",
}

current_trick is the trick that is currently being played. The first trick is 1, not 0!

total_tricks is the amount of tricks in one game.

current_player is the UUID of the player that should play next.

cg:game.dk.round.change - Data update on the round

	
cg:game.dk.round.change

	

This packet is used to update the client’s data on a round of Doppelkopf.

	Internal Name

	cg:game.dk.round.change

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server informs the client on change in the round. This packet is
only available for the game Doppelkopf.

It will be used to signalise the begin or the end of a round. Furthermore, it tells the
client after the end of the reservations about the game type.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "phase": "reservations",
 "player_list": [
 'd5b445bf-8836-4fec-a4a8-a219f6df073e',
 '08e6b252-6f24-4d0f-9d77-be926461874a',
 '9267bb0e-619c-41c6-a3d1-ef7d574ccbdd',
 '9765882f-5763-4373-93a5-f8fd0c643018',
],
 "game_type": "solo_hearts",
}

phase is the current phase of the game.

Note

phase can have following values: loading, dealing, reservations,
tricks, counting and end

player_list is a list of the UUIDs of the players in the game, in the same order as in the server’s
game object

game_type is the type of the game.

modifiers are modifiers like a buckround that influence the weight of the game.

cg:game.dk.scoreboard - Update the scoreboard

	
cg:game.dk.scoreboard

	

This packet is used to update points and pips. It is only used for the game
Doppelkopf.

	Internal Name

	cg:game.dk.scoreboard

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server updates points and pips that players have. This packet is
only available for the game Doppelkopf.

After each trick, the packet will convey the pips all players received. At the
end of each game and in case of a penalty, the packet will convey the points all the players
received.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the server to the client:

{
 "player":"dabb43c0-2854-4cb8-aee0-3c3db3a54244",
 "pips":25
 "pip_change":15
 "points":-5
 "point_change":0
}

player is the UUID of the concerned player.

pips is the amount of pips the player has accumulated in this round.

pip_change is the amount of pips the player gained with the last trick.

points is the amount of points the player has accumulated in the play.

point_change is the amount of points the player gained with the last game.

Note

Both point_change and pip_change may be zero if nothing has changed.

ping Connection Mode

TODO

cg:version.check - Version compatibility check

	
cg:version.check

	

This packet is used to check client and server compatibility

	Internal Name

	cg:version.check

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	versioncheck only

Purpose

Using this packet, the compatibility between server and client is ascertained.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "protoversion": 1,
 "semver": "0.1.0-dev",

 "flavor": "vanilla",
}

protoversion is a positive integer number that has to match exactly between all parties.

semver is used for display to the user and may be used in the future for more granular
compatibility checks.

flavor is the “edition” of the client. vanilla indicates a standard and unmodified
client. Modded versions and special versions should use different flavors. The flavor
must match exactly and is case sensitive.

The server will respond with a packet of the same type and the following data:

{
 "compatible": true,

 "protoversion": 1,
 "semver": "0.1.0-dev",
 "flavor": "vanilla",
}

compatible indicates whether or not the client and this server are compatible with each
other. If compatible is false, the server will end the connection immediately after sending
the packet.

protoversion, semver and flavor are the corresponding version information from the server.

Note

Note that protoversion and semver may not appear to match to the client. This
can happen if the server supports a compatibility mode for older/newer clients. The server
should always report its actual version, not the emulated one.

cg:auth - Authentication Packet

	
cg:auth

	

This packet is used to perform log-in and sign-up activities.

	Internal Name

	cg:auth

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	auth only

Purpose

Using this packet, the client can authenticate itself with the server as a specific
account. It can also create new accounts using this packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "username": "notna",
 "pwd": "...",

 "create": false,
}

username is the user name of the account to login as or create.

pwd is the encrypted password of the given account.

Warning

Currently, passwords aren’t actually encrypted in transmission. In the future,
all traffic will be either tunneled through SSL or an asymmetric cipher will
be used to transmit passwords.

create is an optional flag indicating if the client wishes to create a new account.
If it is not given, it will be assumed as false. This flag exists to prevent accidental
account creation should a user mistype their username.

The server will respond with a packet of the same type and the following data:

{
 "status": "logged_in",

 "username": "notna",
 "uuid": "cfde3788-e653-4ef3-8b19-f741e2194e0f",
}

status is the current authentication status. It should be one of logged_in,
wrong_credentials, user_exists or logged_out.

username is the user name the user is logged in as. This field is only sent
if status is logged_in or user_exists.

uuid is the UUID of the current account. It can be used to look up
further information in the user database. It is only present if status
is logged_in.

If the login attempt was successful, the server will already pre-send a cg:status.user
packet with information on the user. It will also send a cg:status.server.mainscreen
packet to update the client on the contents of the main screen. Also, the connection
mode will change to active.

See also

See the cg:status.user packet for more information on how to get
User data.

See also

See the cg:auth.precheck packet for more information on the
authentication process.

cg:auth.precheck - Authentication Precheck Packet

	
cg:auth.precheck

	

This packet is used to pre-check a login attempt.

	Internal Name

	cg:auth.precheck

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	auth only

Purpose

Using this packet, the client can check if the account name actually exists and
fetch an encryption key to be used when sending the password.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "username": "notna",
}

username is just the user name entered by the user on the prompt displayed by
the client.

The server responds with a packet like this:

{
 "username": "notna",
 "valid": true,
 "exists": true,

 "key": "...",
}

username is the same name as was sent by the client, but normalized according
to the server. Usually this involves lower-casing the user name.

valid is a boolean flag that determines whether or not the username is valid
on this server. This does not mean that it exists, just that it could exist.

exists is a boolean flag showing whether the account exists or not. This can
be used by the client to ask the user if they want to create a new account.

key is a binary key to be used to encrypt the password before sending it to the
server. It is specific to the connection, user name and will expire after some time.
If the key is the empty string, no encryption should be applied.

See also

See the cg:auth packet for further information on password exchange.

cg:status.user - User Status Update

	
cg:status.user

	

This packet is used to request and retrieve user information and status updates.

	Internal Name

	cg:status.user

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	All States

Purpose

Using this packet, the client can request information about a specific user from
the server. The server determines what information to send.

Additionally, the server may send this packet at any to preempt information requests
or notify the client of changes to a users appearance.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the client to the server to request information on a user:

{
 "username": "notna",

 "uuid": "61cf5d06-8d01-4fb3-a4a8-ea7a0633b0b8",
}

username is the name of the user that the client wants information on.

uuid is the UUID that the client wants more information on.

Note

uuid and username are not exclusive, but uuid will be used preferentially
before username.

The server sends user status updates in the following format, either as a response
to a request or as a notification:

{
 "username": "notna",
 "uuid": "cfde3788-e653-4ef3-8b19-f741e2194e0f",

 "status": "logged_in",
 ...
}

status is the current status of the user. This may be one of online,
away, busy, offline or notexist if the user could not be found.

Note

If status is notexist, all other fields will not be populated.

username is the user name to be displayed for the given user.

uuid is the UUID of the given user.

Todo

Add more user attributes here.

cg:status.message - Status Messages for Clients

	
cg:status.message

	

This packet is used by the server to show different notices, warnings and errors on the
client.

	Internal Name

	cg:status.message

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	All States

Purpose

Using this packet, the server can cause the client to show warnings and other messages
to the user.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is an example that the server could send to the client:

{
 "type": "notice",

 "msg": "Hello World!",
}

type is the type of status message and determines the imagery used in the dialog on
the client. Currently, there are the following types: notice, warning and
error.

msg is the raw message. Currently, no formatting is supported, but this may change in
the future.

Note

Long messages may be cut short by the client, depending on the window size and type.

cg:status.server.mainscreen - Status Updates for the main screen

	
cg:status.server.mainscreen

	

This packet is sent by the server to let the client know about the contents of the main
screen.

	Internal Name

	cg:status.message

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Using this packet, the server can update the client on information shown on the main screen.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is an example that the server could send to the client:

{
 ...
}

Todo

Find something to transmit here…

See also

See the cg:status.user packet for more information about how user profile
data is sent to the client.

cg:lobby.create - Create lobby

	
cg:lobby.create

	

This packet is used to create a lobby.

	Internal Name

	cg:lobby.create

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Using this packet, the server is notified of the creation of a lobby, either
because a custom game was created by a client, or because the matchmaking
matched enough players together to start a game.

Upon creating the lobby, the creator and his party members will be joined using
a cg:lobby.join packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "game": "doppelkopf",
 "variant": "c",
}

game may be a string declaring the type of game the lobby creator wants to play.
This field is optional.

variant may be a string declaring the variant of game that the lobby creator wants
to play. Available variants differ from game to game. This field is required if game
is given.

See also

See the cg:lobby.join packet for further information on the response of
the server.

cg:lobby.join - Join lobby

	
cg:lobby.join

	

This packet is used to join a lobby.

	Internal Name

	cg:lobby.join

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

After the creation of a lobby, the creator and all his party members
will be joined automatically. Additionally, any client accepting an invitation will receive
this packet.

Upon joining, the server will send a cg:lobby.change packet to the other clients
in the lobby containing the updated user list. The joining client will receive a similar
packet which however will contain all the information on the lobby.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "lobby":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

lobby is the lobby’s UUID.

See also

See the cg:lobby.create packet for further information on how a lobby is created.

cg:lobby.invite - Invite client to lobby

	
cg:lobby.invite

	

This packet is used to invite other clients to a lobby.

	Internal Name

	cg:lobby.invite

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to invite other clients to a lobby. It transmits the username
of the invited user to the server and afterwards tells the inviter whether the client
exists. Additionally, it informs the invited client on the invitation.

Upon accepting the invitation, the server will receive a cg:lobby.invite.accept
packet from the invited client.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "username":"notna",
}

username is the name of the invited user.

The server will send following data to the invited client:

{
 "inviter":"e2639d1f-a7b3-409f-87e4-595a85444d30",
 "lobby_id":"g2639d1f-a7b3-409f-87e4-595a85444d30"
}

inviter is the UUID of the inviting user.

lobby_id is the UUID of the lobby the user was invited to.

See also

See the cg:lobby.invite.accept packet for further information on accepting
an invitation.

cg:lobby.invite.accept - Accept invitation to lobby

	
cg:lobby.invite.accept

	

This packet is used to accept the invitation to a lobby.

	Internal Name

	cg:lobby.invite.accept

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Upon being invited to a lobby, this packet is used to inform the server on
whether the client has accepted or denied the invitation.

If it accepts the invitation, the client will receive a cg:lobby.join packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "accepted":true,
 "inviter":"d2639d1f-a7b3-409f-87e4-595a85444d30"
 "lobby_id":"e2639d1f-a7b3-409f-87e4-595a85444d30",
}

accepted is a boolean declaring whether the invitation has been accepted.

inviter is the UUID of inviting user.

lobby_id is the UUID of the lobby the user was invited to.

See also

See the cg:lobby.invite packet for further information on inviting to lobbies.

See also

See the cg:lobby.join packet for further information on joining a lobby.

cg:lobby.change - Lobby data change

	
cg:lobby.change

	

This packet is used by the server to inform the client on any kind of change in a lobby.

	Internal Name

	cg:lobby.change

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used to inform all the clients in a lobby about any kind of change.
This might be a client joining or leaving the lobby, the choice of game or its rules being
changed, players signalising their readiness, and more.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "users":{
 "e2639d1f-a7b3-409f-87e4-595a85444d30": {"ready": true, "role": 1},
 "e70d98cd-a33b-41f2-9cb4-8c6e3aeadbb7": {"ready": false, "role": 2},
 },
 "game":"doppelkopf",
 "gamerules":{
 "fuechse":true,
 "feigheit":true,
 "armut":false,
 },
 "gamerule_validators":{
 ...
 },
 "supported_bots": ["dk_dumb", "dk_smart"],
}

userlist is a dictionary mapping the UUIDs of players to their metadata.
This metadata currently contains the ready and role keys. All players must have
their ready flag set to true to begin the game. role determines what the player
can do. If the role is -1, the player should be removed.

user_order is the order of the users for being shown in the lobby and for determining
the seat order in the game.

game is the name of the game that will be played.

gamerules are the rules by which the game will be played. Note that only updated rules will
be sent.

gamerule_validators is a dictionary containing the validators for the current game.

supported_bots is a list of supported bots names.

Todo

Document the validator concept

Note

All the parameters are optional. However, they should be all sent upon joining so
the client knows what information to show.

Note

The keywords for the different gamerules will change depending on the game. Also,
multiple of the games being of german origin, many rules will have german names. All
gamerule names should be ASCII only for maximum compatibility. This does not however
apply to the displayed translated names.

cg:lobby.leave - Leave lobby

	
cg:lobby.leave

	

This packet is used to leave a lobby.

	Internal Name

	cg:lobby.leave

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used to leave a lobby, may it be by the clients own decision or
for it being kicked. The server will also confirm the client that it has left the lobby.

Subsequently, the server will send a cg:lobby.change packet to all remaining
clients in the lobby containing an updated user list.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The serverbound packet doesn’t contain any data.

Note

If the client is kicked out of the lobby, the packet will only be clientbound since
the client didn’t choose itself to leave the lobby.

The server will send following to the client:

{
 "lobby":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

lobby is the UUID of the lobby that was left.

See also

See the cg:lobby.kick for further information on kicking a user out of a lobby.

cg:lobby.kick - Kick user from lobby

	
cg:lobby.kick

	

This packet is used to kick another client from a lobby.

	Internal Name

	cg:lobby.kick

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used to kick a client from a lobby. It also allows the kicker
to name a reason for why the other client has been kicked.

This client will receive a cg:status.message packet informing it on the
reason. Subsequently, the server will send it a cg:lobby.leave packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "uuid":"dc71e5dd-5d4b-4809-8546-068e2628f115",
 "reason":"Pressed Alt-F4 to turn up the volume",
}

uuid is the UUID of the user that ought to be kicked.

reason is the justification for the kick.

See also

See the cg:lobby.leave packet for further information on leaving a lobby.

cg:lobby.ready - Lobby readiness conveyance

	
cg:lobby.ready

	

This packet is used by a client to signalise it is ready to begin the game.

	Internal Name

	cg:lobby.ready

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	lobby only

Purpose

This packet is used by a client to signalise it is ready to begin the game. When all
clients in a lobby conveyed their readiness, the game begins.

When the server receives this packet, it will send a cg:lobby.change packet
to all clients in the lobby containing the updated list of ready players.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "ready": true,
}

ready defines whether or not the client is ready to play.

cg:party.create - Party creation

	
cg:lobby.ready

	

This packet is used to create a party.

	Internal Name

	cg:party.create

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

This packet is used by a client to create a party. Afterwards, the client will
be automatically joined the party using the cg:party.join packet.

Structure

The package ought not to contain any data.

See also

See the cg:party.join for further information on joining a party.

cg:party.join - Join party

	
cg:party.join

	

This packet is used to join a party.

	Internal Name

	cg:party.join

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

After the creation of a party, the creator will be joined automatically to
the party. Additionally, if another client accepts an invitation to a party, he will be
joined.

Upon joining, the server will send a cg:party.change packet to the other clients
in the party containing the updated user list. The joining client will receive a similar
packet which however will contain all the information on the party.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "party":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

party is the party’s UUID.

See also

See the cg:party.create packet for further information on how a party is created.

cg:party.invite - Invite client to party

	
cg:party.invite

	

This packet is used to invite other clients to a party.

	Internal Name

	cg:party.invite

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to invite other clients to a party. It transmits the username
of the invited user to the server and afterwards tells the inviter whether the client
exists. Additionally, it informs the invited client on the invitation.

Upon accepting the invitation, the server will receive a cg:party.invite.accept
packet from the invited client.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "username":"notna",
}

username is the name of the invited user.

The server will answer to the inviting client with this:

{
 "user_found":True,
}

user_found is a boolean informing the inviter whether the invited user has been found.

Additionally, it will send following data to the invited client:

{
 "inviter":"e2639d1f-a7b3-409f-87e4-595a85444d30 ",
}

inviter is the UUID of the inviting user.

See also

See the cg:party.invite.accept packet for further information on accepting
an invitation.

cg:party.invite.accept - Accept invitation to party

	
cg:party.invite.accept

	

This packet is used to accept the invitation to a party.

	Internal Name

	cg:party.invite.accept

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	active only

Purpose

Upon being invited to a party, this packet is used to inform the server on
whether the client has accepted or denied the invitation.

If it accepts the invitation, the client will receive a cg:party.join packet.
Furthermore, the inviter will be informed via a cg:status.message packet,
if the invited client accepted the invitation.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "accepted":true,
}

accepted is a boolean declaring whether the invitation has been accepted.

See also

See the cg:party.invite packet for further information on inviting to parties.

See also

See the cg:party.join packet for further information on joining a party.

cg:party.change - Party data change

	
cg:party.change

	

This packet is used by the server to inform the client on any kind of change in a party.

	Internal Name

	cg:party.change

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to inform all the clients in a party about any kind of change.
This mostly will be a client joining or leaving the party.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "userlist":["e2639d1f-a7b3-409f-87e4-595a85444d30", "e2639d1f-a7b3-409f-87e4-595a85444d30"],
}

userlist is a list containing the UUIDs of the users in the party.

cg:party.leave - Leave party

	
cg:party.leave

	

This packet is used to leave a party.

	Internal Name

	cg:party.leave

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to leave a party, may it be by the clients own decision or
for it being kicked. The server will also confirm the client that it has left the party.

Subsequently, the server will send a cg:party.change packet to all remaining
clients in the lobby containing an updated user list.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The serverbound packet doesn’t contain any data.

Note

If the client is kicked out of the party, the packet will only be clientbound since
the client didn’t choose itself to leave the party.

The server will send following to the client:

{
 "party":"397627fa-2aa3-4cef-b403-7658bb8b424d",
}

party is the UUID of the party that was left.

See also

See the cg:party.kick for further information on kicking a user out of a party.

cg:party.kick - Kick user from party

	
cg:party.invite

	

This packet is used to kick another client from a party.

	Internal Name

	cg:lobby.kick

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	active and lobby

Purpose

This packet is used to kick a client from a party. It also allows the kicker
to name a reason for why the other client has been kicked.

This client will receive a cg:status.message packet informing it on the
reason. Subsequently, the server will send it a cg:party.leave packet.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "username":"notna",
 "reason":"Pressed Alt-F4 to turn up the volume",
}

username is the name user that ought to be kicked.

reason is the justification for the kick.

See also

See the cg:party.leave packet for further information on leaving a party.

cg:game.start - Start game

	
cg:game.start

	

This packet is used to start the game.

	Internal Name

	cg:game.start

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	lobby and active

Purpose

This packet is used to start the game, either when all clients in a lobby conveyed their
readiness or when a client reconnects to the server after exiting from a running game.
Upon receiving this packet, as well as all the card creation packets, the client will send this
packet back to the server so that it knows, when all the players are ready and the cards
can be dealt

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server:

{
 "game_type": "doppelkopf",
 "game_id": 'e613d0cc-1021-46fb-8403-c2b66663cfb6',
 "player_list": [
 'd5b445bf-8836-4fec-a4a8-a219f6df073e',
 '08e6b252-6f24-4d0f-9d77-be926461874a',
 '9267bb0e-619c-41c6-a3d1-ef7d574ccbdd',
 '9765882f-5763-4373-93a5-f8fd0c643018',
],
}

game_type is the type of the game (skat, doppelkopf, rummy or canasta).

game_id is the UUID of the game.

player_list is a list of the UUIDs of the players in the game, in the same order as in the server’s
game object

The client will send and empty packet to the server.

cg:game.end - End game

	
cg:game.end

	

This packet is used to end the game.

	Internal Name

	cg:game.end

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_*

Purpose

This packet is used to end the game, either when the predefined amount of rounds has been
reached or when all players decide to exit the game early.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server:

{
 "next_state": "results"
}

next_state can either be results if the game has been ended properly, or lobby if it was ended
abruptly.

cg:game.load - Load game

	
cg:game.load

	

This packet is used to load a game upon continuing an old game.

	Internal Name

	cg:game.load

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	lobby

Purpose

This packet is used, when a player in a lobby loads an old game. It conveys the game data
to the server so that the server can load this game. The other clients in the lobby will only
receive the game data with the cg:game.start packet

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent to the server:

{
 "game_id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1",
 "data": {
 "id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1"
 "type": "dk",
 "creation_time": 1591004154.1594243,
 "players": [
 "acb8fa68-5c22-42cc-a4fa-1ba600dcdb9e", "c4db1dfe-9d6c-41c2-9a88-ea7c641738a6",
 "d940a7e4-c19a-4904-abcf-71aab689da11", "ac5085ad-148d-4838-b800-dba3c6a5c91c"
],
 "gamerules": {
 "dk.etc": ["and", "so", "on"]
 },
 "round_num": 3,
 "buckrounds": [],
 "scores": [[-3, 3, 3, -3], [2, 2, 2, -6], [5, -5, 5, -5]],
 "current_points": [4, 0, 10, -14],
 "game_summaries": [
 ["re_win", "re"],
 ["kontra_win", "no90"],
 ["kontra_win", "kontra", "no90", "against_cqs"]
]
 }
}

game_id is the game’s UUID.

data is a dictionary containing the data of the saved game. It should contain following keys:

id: see game_id

type The game type. It can be dk (Doppelkopf), sk (Skat), cn (Canasta) and rm (Rummy).

creation_time is the system time at which the game was created.

players is a list of the UUIDs of the players.

gamerules is a dictionary containing the game’s gamerules.

round_num is the amount of rounds, that have already been played.

buckrounds is a list of the buckrounds, that still have to be played. Its exact structure depends on the buckround
gamerules.

scores is a list containing lists for each round. In these lists, the scores for the round are saved.

curront_points is a list containing the current scores for the players.

game_summaries is a list containing the game summaries for all rounds.

cg:game.save - Save game

	
cg:game.save

	

This packet is used to save a game for the purpose of continuing it later.

	Internal Name

	cg:game.save

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_*

Purpose

This packet is used, when all players decided to adjourn the game. The server will send
the clients in the game this packet containing the game data, that should be saved locally
for being able to load it when continuing the game.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server:

{
 "game_id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1",
 "data": {
 "id": "e8d1e1e2-75c8-4225-ab1a-16dabcc260d1"
 "type": "dk",
 "creation_time": 1591004154.1594243,
 "players": [
 "acb8fa68-5c22-42cc-a4fa-1ba600dcdb9e", "c4db1dfe-9d6c-41c2-9a88-ea7c641738a6",
 "d940a7e4-c19a-4904-abcf-71aab689da11", "ac5085ad-148d-4838-b800-dba3c6a5c91c"
],
 "gamerules": {
 "dk.etc": ["and", "so", "on"]
 },
 "round_num": 3,
 "buckrounds": [],
 "scores": [[-3, 3, 3, -3], [2, 2, 2, -6], [5, -5, 5, -5]],
 "current_points": [4, 0, 10, -14],
 "game_summaries": [
 ["re_win", "re"],
 ["kontra_win", "no90"],
 ["kontra_win", "kontra", "no90", "against_cqs"]
]
 }
}

game_id is the game’s UUID.

data is a dictionary containing the data of the saved game. It should contain following keys:

id: see game_id

type The game type. It can be dk (Doppelkopf), sk (Skat), cn (Canasta) and rm (Rummy).

creation_time is the system time at which the game was created.

players is a list of the UUIDs of the players.

gamerules is a dictionary containing the game’s gamerules.

round_num is the amount of rounds, that have already been played.

buckrounds is a list of the buckrounds, that still have to be played. Its exact structure depends on the buckround
gamerules.

scores is a list containing lists for each round. In these lists, the scores for the round are saved.

curront_points is a list containing the current scores for the players.

game_summaries is a list containing the game summaries for all rounds.

cg:game.dk.question - Request an answer from a client

	
cg:game.dk.question

	

This packet is used to request an answer from a player. It is only
used for the game Doppelkopf.

	Internal Name

	cg:game.dk.question

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server can ask the client on its “opinion” on something.
A question packet will be answered by the client with a cg:game.dk.announce
packet. This packet is only available for the game Doppelkopf.

It will be used to ask all players about a reservation at the begin of each round.
In the course of this, the concerned players will be inquired after solos,
throwing, pigs, superpigs, poverty and wedding.
In the cases of a wedding or a poverty, the choice of the trick or of the cards to
exchange are requested by this packet.

See also

See Doppelkopf: Rules for further information on special rules.

In case of an accusation concerning an external misconduct, e.g. originating from a chat,
this packet will be used to ask all the players if they support the accusation.

See also

See the cg:game.dk.complaint packet for further information on accusations.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "type":"reservation",
 "target":"296f8f9f-40dc-4ef7-b9b5-851d58c9c966",
}

type is the type of request sent.

Note

Following types are available: reservation, solo, throw, pigs,
superpigs, poverty, poverty_accept, poverty_trump_choice,
poverty_return_trumps, poverty_return_choice, wedding,
wedding_clarification_trick, black_sow_solo and accusation_vote.

target is the UUID of the player to whom the question is directed. This is
necessary because sometimes all players are supposed to hear a question, though it might not
be directed at all of them.

See also

See the cg:game.dk.announce packet for further information on announcements.

cg:game.dk.announce - Make an announcement

	
cg:game.dk.announce

	

This packet is used to announce something. It is only used for the game Doppelkopf.

	Internal Name

	cg:game.dk.announce

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, a player can make an announcement. This announcement will be sent to
all the players. This packet is only available for the game Doppelkopf.

This packet will be used to answer to a reservation, solo, throwing, pigs,
superpigs, poverty and wedding. In case of a wedding, it will
transfer the clarification trick and in case of a poverty, it will be used to tell the
amount of returned trumps.
During the course of the game, it will be used to announce Re and Kontra as well as
denials like No 90 etc. Furthermore, it will be used to announce a pig.
In case of an accusation with external misconduct it will be used to transmit the votes
of the players.

See also

See Doppelkopf: Rules for further information on special rules.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the client to the server:

{
 "type":"poverty_return",
 "data":{"amount":3},
}

type is the context in which the announcement is made.

data is an optional argument transmitting further information if required.

Note

Following types are available: reservation_yes, reservation_no, solo_yes,
solo_no, throw_yes, throw_no, pigs_yes, pigs_no, superpigs_yes,
superpigs_no, poverty_yes, poverty_no, poverty_accept, poverty_decline,
poverty_return, wedding_yes, wedding_no, wedding_clarification_trick,
re, kontra, no90, no60, no30, black, pig, superpig,
black_sow_solo, ready, throw.

Note

Following types require data:
solo_yes, black_sow_solo: type (the type of the solo),
poverty_return: amount (the amount of trumps returned to the poverty player,
wedding_clarification_trick: trick (the trick the bride wishes to determine the re party),
no90, no60, no30 and black: party (Optional, the party of the announcing player,
but only, if it wasn’t known yet.)

The server conveys following data to all the clients:

{
 "announcer":"453b1c0c-4742-4ba7-9d42-6f4acec1856a",
 "type":"pig",
}

announcer is the UUID of the player who made the announcement.

type and data are similar to arguments the server received.

cg:game.dk.card.intent - Do something with a card

	
cg:game.dk.card.intent

	

This packet is used to do something with a card. It is only used for the game Doppelkopf.

	Internal Name

	cg:game.dk.card.intent

	Direction

	Serverbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, a player can perform an action with a card. Usually this is playing
the card. Subsequently, the server will send a game.dk.card.transfer
packet to all clients. This packet is only available for the game Doppelkopf.

In case of a poverty, this packet will be used to choose the cards that should be
exchanged. Otherwise, it’s used to play a card over the course of the game.

See also

See Doppelkopf: Rules for further information on special rules.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the client to the server:

{
 "intent":"play",
 "card":"91eb5e2c-b7e8-4d8a-b865-7e9eaf2e6469",
}

intent is the action that the player wants performed. It can be play, pass_card or
return_card.

card is the UUID of the card the player wants to use for the given intent. If an intent requires
multiple cards, this field may be a list.

See also

See the game.dk.card.transfer for further information on how a card is moved
from one slot to another.

cg:game.dk.card.transfer - Transfer a card

	
cg:game.dk.card.transfer

	

This packet is used to transfer a card from one slot to another one. It is only
used for the game Doppelkopf.

	Internal Name

	cg:game.dk.card.transfer

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server can signalise the client that a card was transferred
to another slot. This packet is only available for the game Doppelkopf.

This may be used for dealing the cards, where the cards will be moved from the shuffled
deck to the hands of the players. It will also be used when a player plays a card; the
card will be transferred from the player’s hand to the table. Furthermore, after all
the players played their card, the four cards on the table will be moved to the trick
stack of the player who won the trick. Moreover, if the rule Armut is active,
upon declaring an Armut, this packet will be used for exchanging three cards from the
concerned players.

See also

See Doppelkopf: Rules for further information on special rules.

Note

To minimise the possibilities to cheat, the packet will only transmit the value of the
card if the client is intended to know about it. Otherwise, the client will only be informed
on the transfer of an unknown card.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "card_id":"91eb5e2c-b7e8-4d8a-b865-7e9eaf2e6469",
 "card_value":"cq",
 "from_slot":"hand2",
 "to_slot":"table",
}

card_id is the UUID of the transferred card.

card_value is the value of the card. If the client should not know about the card
value, an empty string will be transmitted.

from_slot is the slot in which the card was before the transfer. If this is
None, the card is to be created. If this field is not None and the card_id
does not exist, the client should crash with an appropriate error message.

to_slot is the slot to which the card will be transferred.

Note

Following slots are available: stack, hand0 to hand3, poverty, table,
tricks0 to tricks3

cg:game.dk.complaint - Point out a wrong move

	
cg:game.dk.complaint

	

This packet is used to point out a mistake another player has made. It is only used for
the game Doppelkopf.

	Internal Name

	cg:game.dk.complaint

	Direction

	Bidirectional

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, a player can denounce a mistake by another player. This packet is
only available for the game Doppelkopf.

This packet is used when a player makes a mistake by accident or deliberately and another
player denounces this mistake. First, the denouncing player has to accuse, which player
made the mistake and choose the type of the misconduct.
In case of an accusation with wrong card or wrong announcement, he will receive a
list of all the cards the accused player played and all the announcements he made. The
accusing player must choose from this list, which move was illegal.
In case of an accusation with played early, the server will check whether the last card
of the accused player was played before it was his turn.
If the accusation proves to be wrong or if the accusing player decides to cancel the
accusation, he will receive a penalty himself. Otherwise, the accused player will be
punished and the game might be aborted, depending on the penalty settings.

The mistake can also emanate from a chat or voice chat. Since the server cannot automatically
arbitrate such a complaint, the two other players have to confirm it using a
cg:game.dk.question and a cg:game.dk.announce packet. If 3 of
the 4 players back the accusation, the punishment will be undergone by the accused,
otherwise by the accuser.

Note

If the punished player ought to receive demerit points, the cg:game.dk.scoreboard
will be used.

See also

See Doppelkopf: Penalties for further information on penalty settings.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the client to the server:

{
 "accused":"e421c337-70f6-409a-bdcf-acf1b3c3c6e0",
 "type":"wrong_announcement",
}

accused is the UUID of the accused player.

type is the misconduct the accused is charged with.

Note

Type can have following arguments: wrong_card, wrong_announcement, played_early,
external

In case of an accusation with wrong_card or wrong_announcement, the server will
reply like this:

{
 "moves":{
 0:{
 "type":"announcement",
 "data":"reservation_no",
 },
 4:{
 "type":"announcement",
 "data":"kontra",
 },
 5:{
 "type":"card",
 "data":"cq",
 },
 ...
 },
 "accused": "e421c337-70f6-409a-bdcf-acf1b3c3c6e0",
 "type": "wrong_announcement",
}

moves is a dictionary containing all the moves the player has done so far. Each move is
represented by its move-ID, beginning in each round with 0 and counting up for each announcement
made and each card played. The ID is followed by a dictionary declaring its type (announcement, card
or accusation) and data specifying the kind of the announcement or the value of the card.

Note

Only the accuser will receive the moves field. All other clients will still get all
other fields, however.

The client will respond with the following data:

{
 "accused":"e421c337-70f6-409a-bdcf-acf1b3c3c6e0",
 "type":"wrong_announcement",
 "move":{
 "98fd442d-4ee0-4d96-bf51-12917e36a001":{"type":"announcement", "data":"kontra"},
 },
}

accused and type remain the same as in the first packet.

move is the move representing the misconduct, stored as described above.

cg:game.dk.turn - Turn Update

	
cg:game.dk.turn

	

This packet is used to inform all players about the next turn. It is only used for the game
Doppelkopf.

	Internal Name

	cg:game.dk.turn

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server informs all clients, whose turn it is to play a card. This
packet is only available for the game Doppelkopf.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the server to the client:

{
 "current_trick":1,
 "total_tricks":12,
 "current_player":"7eb1c06d-2f66-46c7-8eef-6aa5a2ff85aa",
}

current_trick is the trick that is currently being played. The first trick is 1, not 0!

total_tricks is the amount of tricks in one game.

current_player is the UUID of the player that should play next.

cg:game.dk.round.change - Data update on the round

	
cg:game.dk.round.change

	

This packet is used to update the client’s data on a round of Doppelkopf.

	Internal Name

	cg:game.dk.round.change

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server informs the client on change in the round. This packet is
only available for the game Doppelkopf.

It will be used to signalise the begin or the end of a round. Furthermore, it tells the
client after the end of the reservations about the game type.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

This is the data sent by the server to the client:

{
 "phase": "reservations",
 "player_list": [
 'd5b445bf-8836-4fec-a4a8-a219f6df073e',
 '08e6b252-6f24-4d0f-9d77-be926461874a',
 '9267bb0e-619c-41c6-a3d1-ef7d574ccbdd',
 '9765882f-5763-4373-93a5-f8fd0c643018',
],
 "game_type": "solo_hearts",
}

phase is the current phase of the game.

Note

phase can have following values: loading, dealing, reservations,
tricks, counting and end

player_list is a list of the UUIDs of the players in the game, in the same order as in the server’s
game object

game_type is the type of the game.

modifiers are modifiers like a buckround that influence the weight of the game.

cg:game.dk.scoreboard - Update the scoreboard

	
cg:game.dk.scoreboard

	

This packet is used to update points and pips. It is only used for the game
Doppelkopf.

	Internal Name

	cg:game.dk.scoreboard

	Direction

	Clientbound

	Since Version

	v0.1.0

	Valid States

	game_dk only

Purpose

Using this packet, the server updates points and pips that players have. This packet is
only available for the game Doppelkopf.

After each trick, the packet will convey the pips all players received. At the
end of each game and in case of a penalty, the packet will convey the points all the players
received.

Structure

Note that all examples shown here contain placeholder data and will have different
content in actual packets.

This is the data sent by the server to the client:

{
 "player":"dabb43c0-2854-4cb8-aee0-3c3db3a54244",
 "pips":25
 "pip_change":15
 "points":-5
 "point_change":0
}

player is the UUID of the concerned player.

pips is the amount of pips the player has accumulated in this round.

pip_change is the amount of pips the player gained with the last trick.

points is the amount of points the player has accumulated in the play.

point_change is the amount of points the player gained with the last game.

Note

Both point_change and pip_change may be zero if nothing has changed.

Glossary

	Custom game

	A custom game is a game that is created by a player and not by the
matchmaking system. After the creation, the game will be prepared in a
lobby. In a custom game, the game as well as the rules can be chosen
individually. Furthermore, users can be manually added and removed as players and
as spectators.

	Doppelkopf

	TODO

	Lobby

	A lobby is a submenu used for the creation of custom game. In it,
settings for the game can be specified and other players can be invited to join the
game.

	Matchmaking

	The matchmaking system is an algorithm on the server conceived to matching
multiple users that want to play, together, preferably users with the same level
of experience.

	Party

	A party is a group of players that joined to play together, either a
custom game or a game created by the matchmaking system.

	Slot

	A slot is a single slot that zero or more cards can occupy. Common slots
are the hands of the players, the table and the “bank”.

	user database

	The user database stores common information about players. It is usually accessed
by the UUID of a user, but can also be searched by username.

	UUID

	A UUID is a Universally Unique Identifier. Usually represented as a
hexadecimal string, like fe033447-68ac-41f8-a654-6fd84071ae6a. It is
used to uniquely identify users and other objects.

	round

	A round is a single round of a game. It commonly consists of tricks
and cannot be paused and restarted later

	trick

	A trick usually consists of four cards that are played.

	game

	A game is made up of rounds. It is fully self-contained.

	bot

	A bot is a computer-controlled player that can play one or more supported games.
Bots usually act autonomously and have access to the same information as a normal player.

 Packet Index

 c

 		 	

 		
 c	

 	
 	
 cg:auth (protospec/packets/packet_auth)	
 Packet

 	
 	
 cg:auth.precheck (protospec/packets/packet_auth_precheck)	
 Packet

 	
 	
 cg:game.dk.announce (protospec/packets/game_dk/packet_game_dk_announce)	
 Packet

 	
 	
 cg:game.dk.card.intent (protospec/packets/game_dk/packet_game_dk_card_intent)	
 Packet

 	
 	
 cg:game.dk.card.transfer (protospec/packets/game_dk/packet_game_dk_card_transfer)	
 Packet

 	
 	
 cg:game.dk.complaint (protospec/packets/game_dk/packet_game_dk_complaint)	
 Packet

 	
 	
 cg:game.dk.question (protospec/packets/game_dk/packet_game_dk_question)	
 Packet

 	
 	
 cg:game.dk.round.change (protospec/packets/game_dk/packet_game_dk_round_change)	
 Packet

 	
 	
 cg:game.dk.scoreboard (protospec/packets/game_dk/packet_game_dk_scoreboard)	
 Packet

 	
 	
 cg:game.dk.turn (protospec/packets/game_dk/packet_game_dk_turn)	
 Packet

 	
 	
 cg:game.end (protospec/packets/packet_game_end)	
 Packet

 	
 	
 cg:game.load (protospec/packets/packet_game_load)	
 Packet

 	
 	
 cg:game.save (protospec/packets/packet_game_save)	
 Packet

 	
 	
 cg:game.start (protospec/packets/packet_game_start)	
 Packet

 	
 	
 cg:lobby.change (protospec/packets/lobby/packet_lobby_change)	
 Packet

 	
 	
 cg:lobby.create (protospec/packets/lobby/packet_lobby_create)	
 Packet

 	
 	
 cg:lobby.invite (protospec/packets/lobby/packet_lobby_invite)	
 Packet

 	
 	
 cg:lobby.invite.accept (protospec/packets/lobby/packet_lobby_invite_accept)	
 Packet

 	
 	
 cg:lobby.join (protospec/packets/lobby/packet_lobby_join)	
 Packet

 	
 	
 cg:lobby.kick (protospec/packets/lobby/packet_lobby_kick)	
 Packet

 	
 	
 cg:lobby.leave (protospec/packets/lobby/packet_lobby_leave)	
 Packet

 	
 	
 cg:lobby.ready (protospec/packets/lobby/packet_lobby_ready)	
 Packet

 	
 	
 cg:lobby.ready (protospec/packets/party/packet_party_create)	
 Packet

 	
 	
 cg:party.change (protospec/packets/party/packet_party_change)	
 Packet

 	
 	
 cg:party.invite (protospec/packets/party/packet_party_invite)	
 Packet

 	
 	
 cg:party.invite (protospec/packets/party/packet_party_kick)	
 Packet

 	
 	
 cg:party.invite.accept (protospec/packets/party/packet_party_invite_accept)	
 Packet

 	
 	
 cg:party.join (protospec/packets/party/packet_party_join)	
 Packet

 	
 	
 cg:party.leave (protospec/packets/party/packet_party_leave)	
 Packet

 	
 	
 cg:status.message (protospec/packets/packet_status_message)	
 Packet

 	
 	
 cg:status.server.mainscreen (protospec/packets/packet_status_server_mainscreen)	
 Packet

 	
 	
 cg:status.user (protospec/packets/packet_status_user)	
 Packet

 	
 	
 cg:version.check (protospec/packets/packet_version_check)	
 Packet

Index

 B
 | C
 | D
 | G
 | L
 | M
 | P
 | R
 | S
 | T
 | U

B

 	
 	bot

C

 	
 	Custom game

D

 	
 	Doppelkopf

G

 	
 	game

L

 	
 	Lobby

M

 	
 	Matchmaking

P

 	
 	Party

R

 	
 	round

S

 	
 	Slot

T

 	
 	trick

U

 	
 	user database

 	
 	UUID

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cardgame’s documentation!

 		
 CardGame Multiplayer Protocol Specification

 		
 Protocol Specification Index

 		
 Cards

 		
 Doppelkopf: Rules

 		
 Doppelkopf: Penalties

 		
 auth - Authentication Packets

 		
 status - Status Packets

 		
 party - Party Management Packets

 		
 lobby - Lobby Management Packets

 		
 game - Main Game Packets

 		
 ping Connection Mode

 		
 Packets

 		
 Glossary

